

DO-254 Case Study

Paul S. Miner

FAA National Software Conference May 15, 2002

- Project Overview
 - Goals
 - Design Description
- Appendix B items
- Future Plans

May 15, 2002

DO-254 Case Study

Langley Research Center

Project Goals

- FAA Goals:
 - Develop case study application of DO-254
 - Provide feedback on problem areas
 - Provide material suitable for DO-254 training
- · NASA Goals:
 - Demonstrate Application of Formal Methods in Certification context
 - Develop research platform for exploring recovery from correlated transient faults

May 15, 2002

DO-254 Case Study

3

Team Members and Responsibilities

- NASA
 - Paul Miner, Project Lead, Formal Modeling
 - Mahyar Malekpour, Design Engineer
 - Wilfredo Torres, Design Engineer
 - Kelly Hayhurst, Process Assurance
- ICASE
 - Alfons Geser, Formal Modeling, Independent Review

May 15, 2002

DO-254 Case Study

Project Overview

- Design part of a new fault-tolerant IMA architecture for case study
 - Fault-tolerance is inherently complex
 - but system description is compact
- Case study applied to the Reliable Optical Bus (ROBUS) of the Scalable Processor-Independent Design for EME Resilience (SPIDER).

May 15, 2002 DO-254 Case Study

What is SPIDER?

- A family of fault-tolerant IMA architectures
- Inspired by several earlier designs
 - Main concept inspired by Palumbo's Fault-tolerant processing system (U.S. Patent 5,533,188)
 - Developed as part of Fly-By-Light/Power-By-Wire project
 - Other ideas from Draper's FTPP, FTP, and FTMP;
 Allied-Signal's MAFT; SRI's SIFT; Kopetz's TTA;
 Honeywell's SAFEbus; . . .

May 15, 2002

DO-254 Case Study

SPIDER Architecture

- N general purpose Processing Elements (PEs) logically connected via a Reliable Optical BUS (ROBUS)
- A ROBUS is an ultra-reliable unit providing basic faulttolerant services
- A ROBUS is implemented as a special purpose faulttolerant device
 - ROBUS contains no software

May 15, 2002

DO-254 Case Study

7

Logical View of ROBUS

- ROBUS operates as a time-division multiple access broadcast bus
- ROBUS strictly enforces write access
 - no babbling idiots (prevented by ROBUS topology)
- Processing nodes may be grouped to provide differing degrees of fault-tolerance
 - PEs cannot fail asymmetrically (prevented by ROBUS topology)

May 15, 2002 DO-254 Case Study

Langley Research Center

ROBUS Characteristics

- Bus access schedule statically determined
 - similar to SAFEbus, TTA
 - All good nodes agree on schedule
- Some fault-tolerance functions provided by processing elements
 - ROBUS does not have general purpose processing capabilities
- Processing Elements need not be uniform
 - support for dissimilar architectures

May 15, 2002

DO-254 Case Study

11

Langley Research Center

ROBUS Requirements

- 1. All messages shall be broadcast on the ROBUS by the processing elements (PEs) according to a predetermined message sequence. All good PEs shall agree upon the message sequence.
 - 1.1 The ROBUS shall ensure the proper message sequence
 - 1.1.1 A faulty PE shall not prevent a good PE from broadcasting in its allocated time slot
- No Babbling Idiots

May 15, 2002

DO-254 Case Study

Requirements (continued)

- 1.2 All fault-free PEs shall observe the exact same sequence of messages
 - 1.2.1 If a faulty PE broadcasts a message, all good PEs shall agree on the content of the message.
 - 1.2.2 If a good PE broadcasts a message, all good PEs shall receive the message that was broadcast.
- The ROBUS needs a Byzantine Fault Tolerant Interactive Consistency Protocol

May 15, 2002 DO-254 Case Study

Requirements (continued)

- 2. ROBUS shall provide a reliable time source (RTS) to all PEs
 - 2.1 The ROBUS shall maintain synchronization in the presence of a bounded number of internal ROBUS component failures
 - 2.2 All good PEs shall be synchronized relative to the ROBUS
- The ROBUS needs a Byzantine Fault Tolerant Clock Synchronization Protocol

May 15, 2002 DO-254 Case Study 14

Requirements (continued)

- 3. ROBUS shall provide correct and consistent system diagnostic information to all fault-free PEs in the presence of a bounded number of component failures.
- 4. ROBUS shall be an order of magnitude more reliable than is required for the supported aircraft function.
- 4.1 (Level A) For 10 hour mission, P(Failure) < 10⁻¹⁰

May 15, 2002

DO-254 Case Study

15

Design Assurance Strategy

- Fault-tolerance protocols and reliability models use the same fault classifications
- Reliability analysis using SURE (Butler)
 - Calculates P(enough good hardware)
- Formal proof of fault-tolerance protocols using PVS (SRI)

enough good hardware => correct operation

May 15, 2002

DO-254 Case Study

Physical Segregation

- ROBUS decomposed into physically isolated Fault Containment Regions (FCR)
 - Two main design elements
 - · Bus Interface Unit (BIU)
 - Redundancy Management Unit (RMU)
 - Processing elements may form separate FCRs
- FCRs fail independently

May 15, 2002 DO-254 Case Study 17

Langley Research Center

Fault Assumptions

- The failure status of an FCR is subdivided into four cases
 - Good (or fault-free)
 - Benign faulty (Obviously bad to all good)
 - Symmetric Faulty (Same manifestation to all good)
 - Asymmetric Faulty (Byzantine)
- Models use these classifications
- This is a global classification

May 15, 2002

DO-254 Case Study

19

Langley Research Center

Local Fault Classification

- Hybrid fault model implies ability to locally detect and diagnose all benign faulty nodes
- Each node maintains a local determination of fault status of other nodes
 - No good node is accused by any good observer
 - All benign faulty nodes are accused by all good observers
 - If a symmetric faulty node is accused by any good observer, then it is accused by all good observers
 - Asymmetric faulty nodes may be accused by some good observers

May 15, 2002

DO-254 Case Study

Maximum Fault Assumption

- 1. |GB| > |AB| + |SB|
- 2. |GR| > |AR| + |SR|
- 3. |AR| = 0 or |AB| = 0

All protocols to be verified under this fault assumption

Reliability model failure conditions correspond to violations of these assumptions

May 15, 2002

DO-254 Case Study

21

Outline

- Project Overview
 - Goals
 - Design Description
- Appendix B items
- Future Plans

May 15, 2002

DO-254 Case Study

Appendix B Items

- Architectural Mitigation
- Product Service Experience
- Advanced Verification Methods
 - Elemental Analysis
 - Safety-Specific Analysis
 - Formal Methods

May 15, 2002

DO-254 Case Study

23

Langley Research Center

Not relevant to this design

- Architectural mitigation
 - The ROBUS is an architecture designed to mitigate effects of various faults, so we cannot use as a strategy for its design assurance
- Service History New design, so N/A
- Safety-specific analysis This design is independent of aircraft function, so N/A

May 15, 2002

DO-254 Case Study

Elemental Analysis

- DO-254 analog of structural coverage
- Selected TransEDA's VN-cover tool for coverage analysis
 - Supports several different types of coverage
 - Control logic tests
 - · statement, branch, condition, path
 - Data tests
 - · trigger, signal trace, toggle

May 15, 2002

DO-254 Case Study

25

Focused Expression Coverage

- VN-cover's default condition coverage for VHDL code is Focused Expression Coverage (FEC)
- We have determined that FEC is the same as Masking MC/DC
 - By examining TransEDA documentation
 - By analyzing results for simple designs

May 15, 2002

DO-254 Case Study

Assessment of VN-cover

- DO-254 does not require detailed assessment of tools supporting elemental analysis
 - "If the tool is ... used to assess the completion of verification testing, such as in elemental analysis, no further assessment is necessary" p. 76, item 4.

May 15, 2002 DO-254 Case Study 27

Planned uses of VN-cover

- · FEC for both BIU and RMU
- Explore other coverage measures such as toggle and trigger

May 15, 2002 DO-254 Case Study 28

Formal Methods

- This is dominant design assurance strategy for this project
- · Emphasis on early life-cycle verification
- Formal proof of key fault-tolerance protocols
 - Interactive Consistency
 - Distributed Diagnosis
 - Clock Synchronization

May 15, 2002 DO-254 Case Study

Strength of Formal Verification

- · Proofs equivalent to testing the protocols
 - for all possible ROBUS configurations (i.e. for all N, M)
 - for all possible combinations of faults that satisfy the maximum fault assumption for each possible ROBUS configuration
 - for all possible message values
- The PVS proofs provides verification coverage equivalent to an infinite number of test cases.
 - Provided that the PVS model of the protocols is faithful to the VHDL model

May 15, 2002 DO-254 Case Study 30

Langley Research Center

Interactive Consistency

(Byzantine Agreement)

Agreement: For any message, all good receiving nodes will agree on the value of the message

Validity: If the originator of the message is nonfaulty, good receivers will receive the message sent

May 15, 2002

DO-254 Case Study

31

Langley Research Center

Diagnosis

Correctness: Every node diagnosed as faulty by a good node is faulty

A good node can never conclude that another good node is faulty

Completeness: Every faulty node is (eventually) diagnosed as being faulty

- This is not always possible (pathological case involves asymmetric fault)
- Also need Agreement among good nodes

May 15, 2002

DO-254 Case Study

Langley Research Center

Clock Synchronization

Precision: There is a small positive constant d_{max} such that for any two clocks that are good at t,

$$|C_1(t) - C_2(t)| \Leftrightarrow d_{max}$$

Accuracy: All good clocks maintain an accurate measure of the passage of time (within a linear envelope of real time)

May 15, 2002

DO-254 Case Study

33

Langley Research Center

Interdependencies

- Each of these protocols depends upon the correct operation of the others
 - The IC and Diagnosis protocols are synchronous distributed algorithms, they require the relative skew between any pair of good nodes be bounded
 - All protocols depend upon correct diagnostic data for ignoring failed nodes (This uses a combination of Local and Global Diagnosis)
 - Global diagnosis protocol uses Interactive
 Consistency for exchange of local error syndromes

May 15, 2002

DO-254 Case Study

Discussion of Protocols

- Overview of Interactive Consistency Protocol
- Model characteristics
- What to look for in formal models

May 15, 2002

DO-254 Case Study

Langley Research Center

Interactive Consistency

- SPIDER IC protocol is simple adaptation of IC algorithm for Draper FTP Architecture
 - Existing PVS proof (for FTP) due to Lincoln and Rushby, COMPASS'94, pages 107-120
 - SPIDER Protocol is similar to the original FTP protocol [T. Basil Smith, FTCS 14 (1984)]
- Protocol generalizes one suggested in

Daniel Davies and John Wakerly, Synchronization and Matching in Redundant Systems, IEEE Trans. on Computers, Vol. C-27, No. 6, June 1978

May 15, 2002

DO-254 Case Study

Interactive Consistency Protocol (ICP)

- 1. PE j transmits its message ν to BIU j
- 2. BIU / broadcasts v to all RMUs
- 3. For each RMU k, if RMU k does not receive a correctly formatted message from BIU j then it broadcasts *source error* to all BIUs, otherwise it broadcasts the received value v_k to all BIUs
- 4. Each BIU collects the values received $(v_1, ..., v_M)$. If a BIU does not receive a correctly formatted message from RMU k, it removes RMU k from its set of *trusted* RMUs (k is accused).
- 5. Each BIU determines if there is a majority among the values from the *trusted* RMUs
- 6. If BIU /determines that a majority of *trusted* RMUs sent the same value v_{maj} BIU /transmits v_{maj} to PE /. Otherwise, BIU /transmits no majority to PE /.

May 15, 2002 DO-254 Case Study 37

PVS Model of IC Protocol

- Global view of protocol (local information modeled using global vectors)
- · Assumes synchronous composition
- Communication primitive modeled using full knowledge of global fault status. Behavior of faulty nodes is only restricted by global fault status and communication interface.
- Vote using updated set of trusted sources based on local diagnosis modeled in the communication primitive

May 15, 2002

DO-254 Case Study

39

Interactive Consistency Results(1)

Agreement: For all BIU g,

if (|AR| = 0) or

(g \approx AB and |GR| > |SR| + |AR|),

then for all $p_{,q}$ % GB:

ICP(g, v, p) = ICP(g, v, q)

May 15, 2002

DO-254 Case Study

Langley Research Center

Interactive Consistency Results(2)

Validity:

If |GR| > |SR| + |AR|, then for p % GB:

- If $g \ \%$ GB, then ICP(g, v, p) = v
- If $g \gamma_0$ BB, then $ICP(g,v,p) = source\ error$
- If $g \text{ Y}_{o}$ SB, then ICP(g,v,p) = sent(g,v)

May 15, 2002

DO-254 Case Study

41

Langley Research Center

Critical Assumptions of IC

- Nodes are synchronized within a bounded skew and architecture prevents this skew from impacting operation of protocol
- Local diagnostic information is correct
 - Sources for vote by a good node include all good nodes, no benign faulty nodes, and only those symmetrically faulty nodes included by all other good nodes
 - Benign faults are excluded by local diagnosis
- Voter has required properties
 - Have PVS proof of Boyer-Moore MJRTY algorithm
- Communication primitives have required properties

May 15, 2002

DO-254 Case Study

Modeling Issues

- Are the models meaningful?
 - Are abstractions valid?
 - · e.g. synchronous composition, functional abstraction
 - Are assumptions satisfiable?
 - Is there a typical case?
 - Are assumptions true for initial conditions?
 - Are assumptions preserved through execution of protocol?

May 15, 2002

DO-254 Case Study

43

Langley Research Center

More Modeling Issues

- How is the formal model related to the modeled artifact?
 - Compilation of VHDL to model?
 - Compilation of model to VHDL?
 - Manual comparison?

May 15, 2002

DO-254 Case Study

Formal Proof Issues

- Have you proven the claim you intended to prove?
 - Sanity checks:
 - For each hypothesis, demonstrate why proof fails when hypothesis removed (may be an informal argument)
 - · Confirm that you haven't assumed the conclusion
 - Confirm that models of system components only have access to data that the modeled component has access to.

May 15, 2002

DO-254 Case Study

45

Added Benefits of Formal Methods

- Formal Models provide detailed understanding of why protocols work
- This sometimes results in ability to recognize improvements to protocols
 - verification of diagnosis protocol suggested way to reduce communication overhead by almost half
 - subsequently identified more aggressive optimization
 - · currently verifying new protocol

May 15, 2002

DO-254 Case Study

Future Plans

- · Complete verification data
 - VHDL test benches
 - Coverage analysis using VN-cover
 - complete formal proofs
- Revise design to incorporate transient fault recovery
- · Update FPGA based lab prototype

May 15, 2002

DO-254 Case Study

47